Diferencies ente revisiones de «Mecánica cuántica»

m
Preferencies llingüístiques
m (Preferencies llingüístiques)
m (Preferencies llingüístiques)
* [[Efeutu Compton]].
 
El desenvolvimientu formal de la teoría foi obra de los esfuerzosesfuercios conxuntos de dellos físicos y matemáticos de la dómina como [[Erwin Schrödinger|Schrödinger]], [[Werner Heisenberg|Heisenberg]], [[Albert Einstein|Einstein]], [[Paul Adrien Maurice Dirac|Dirac]], [[Niels Bohr|Bohr]] y [[Von Neumann]] ente otros (la llista ye llarga). Dalgunos de los aspeutos fundamentales de la teoría tán siendo entá estudiaos viviegamente. La mecánica cuántica foi tamién adoptada como la teoría subxacente a munchos campos de la física y la química, incluyendo la [[física de la materia entestada]], la [[química cuántica]] y la [[física de partícules]].
 
La rexón d'orixe de la mecánica cuántica puede alcontrase na Europa central, n'[[Alemaña]] y [[Austria]], y nel contestu históricu del primer terciu del [[sieglu XX]].
=== Formulación matemática ===
{{AP|Postulaos de la mecánica cuántica|Notación braket}}
Na formulación matemática rigorosa, desenvuelta por [[Paul Adrien Maurice Dirac|Dirac]] y [[John von Neumann|von Neumann]], los estaos posibles d'un sistema cuánticu tán representaos por vectores unitarios (llamaos ''estaos'') que pertenecen a un [[Espaciu de Hilbert]] [[Númberos complexos|complexu]] [[espaciu xebrable|xebrable]] (llamáu'l ''espaciu d'estaos''). Qué tipu d'espaciu de Hilbert ye necesariu en cada casu depende del sistema; por casu, l'espaciu d'estaos pa los estaos de posición y momentu ye l'espaciu de [[función de cuadráu integrable|funciones de cuadráu integrable]] <math>\scriptstyle L^2(\R^3)</math>, ente que la descripción d'un sistema ensin traslación pero con un [[espín]] <math>\scriptstyle n\hbar</math> ye l'espaciu <math>\scriptstyle \mathbb{C}^{2n+1}</math>. La [[ecuación de movimiento|evolución temporal]] d'un estáu cuánticu queda descrita pola [[ecuación de Schrödinger]], na qu'el l'[[Hamiltoniano (mecánica cuántica)|hamiltoniano]], l'operador correspondiente a la enerxía total del sistema, tien un papel central.
 
Cada magnitú observable queda representada por un [[Operador hermítico|operador llineal hermítico]] definíu sobre un [[Glosariu de topoloxía#D|dominiu trupu]] del espaciu d'estaos. Cada estáu propiu d'un [[observable]] correspuende a un [[eigenvector]] del operador, y el [[valor propiu]] o eigenvalor asociáu correspuende al valor del observable naquel estáu propiu. El [[espectru d'un operador]] pue ser continuu o discretu. La midida d'un observable representáu por un operador con espectru discretu namái puede tomar un conxuntu numerable de posibles valores, ente qu'el operadores con espectru continuu presenten midíes posibles n'intervalos reales completos. Mientres una midida, la probabilidá de qu'un sistema colapse a unu de los eigenestados vien dada pol cuadráu del valor absolutu del [[productu interior]] ente l'estáu propiu o autu-tao (que podemos conocer teóricamente enantes de midir) y el vector tao del sistema enantes de la midida. Podemos asina atopar la distribución de probabilidá d'un observable nun estáu dáu computando la [[Teorema espectral|descomposición espectral]] del operador correspondiente. El principiu d'incertidume de Heisenberg representar pola aseveración de qu'el operadores correspondientes a ciertos observables non [[Operador (mecánica cuántica)#Conmutación d'operadores|conmutan]].
== Relatividá y la mecánica cuántica ==
{{ap|Teoría cuántica de campos Segunda cuantización}}
El mundu modernu de la física fúndase notablemente en dos teoríes principales, la [[relatividá xeneral]] y la mecánica cuántica, anque dambes teoríes usen principios aparentemente incompatibles. Los postulaos que definen la teoría de la relatividá de Einstein y la teoría del quántum tán sofitaos por rigorosa y repitida evidencia empírica. Sicasí, dambes aguantar a ser incorporaes dientro d'un mesmu modelu coherente. Dende mediaos del sieglu XX, apaecieron teoríes cuántiques relativistes del campu electromagnético ([[electrodinámica cuántica]]) y les fuercesfuercies nucleares ([[modelu electrodébil]], [[cromodinámica cuántica]]), pero hasta la fecha ({{CURRENTYEAR}}) nun se tien una teoría cuántica relativista del campu gravitatorio que seya dafechu consistente y válida pa campos gravitatorios intensos (esisten aproximamientos n'[[Planitud asintótica|espacios asintóticamente planos]]). Toles teoríes cuántiques relativistes consistentes usen los métodos de la [[teoría cuántica de campos]].
 
Na so forma ordinaria, la teoría cuántica abandona dalgunos de los supuestos básicos de la [[teoría de la relatividá]], como por casu el [[principiu de llocalidá]] usáu na descripción relativista de la [[causalidá (física)|causalidá]]. El mesmu [[Albert Einstein|Einstein]] había consideráu absurda la violación del principiu de llocalidá a la que paecía emponer la mecánica cuántica. La postura de Einstein foi postular que la mecánica cuántica magar yera [[consistencia lóxica|consistente]] yera [[completitud|incompleta]]. Pa xustificar el so argumentu y el so refugu a la falta de llocalidá y la falta de determinismu, Einstein y dellos de los sos collaboradores postularon la llamada [[Paradoxa EPR|paradoxa de Einstein-Podolsky-Rosen]] (EPR), que demuestra que midir l'estáu d'una partícula puede instantáneamente camudar l'estáu del so sociu enllazáu, anque los dos partícules pueden tar a una distancia arbitrariamente grande. Modernamente la paradóxica resultancia de la paradoxa EPR sábese ye una consecuencia perfectamente consistente del llamáu [[entrelazamiento cuánticu]]. Ye un fechu conocíu que magar la esistencia del entrelazamiento cuánticu efectivamente viola'l principiu de llocalidá, sicasí nun viola la [[causalidá (física)|causalidá]] definíu en términos d'información, cuidao que nun hai tresferencia posible d'información. Magar nel so tiempu, paecía que la paradoxa EPR suponía una dificultá empírica pa mecánica cuántica, y Einstein consideró que la mecánica cuántica na [[interpretación de Copenhague]] podría ser refugada por esperimentu, décades más tarde los esperimentos de [[Alain Aspect]] (1981) revelaron que efectivamente la evidencia esperimental parace apuntar en contra del principiu de llocalidá.<ref>A. Aspect et al.: "Esperimental Tests of Realistic Local Theories via Bell's Theorem", Phys. Rev. Lett. 47, p. 460 (1981)</ref> Y por tanto, la resultancia paradóxica que Einstein refugaba como "ensin sentíu" paez ser lo qu'asocede precisamente nel mundu real.