Diferencies ente revisiones de «Efeutu Coriolis»

Ensin cambiu de tamañu ,  hai 6 meses
m
corrixo xéneru neutru
m (xéneru neutru mal aplicáu)
m (corrixo xéneru neutru)
[[Archivu:Parabolic_dish_ellipse_oscill.gif|400px|thumb|right|Una bolina mover ensin resfregón sobre un platu de seición parabólica que ta xirando a velocidá constante. La gravedá tira de la bolina escontra'l centru con una fuercia direutamente proporcional a la distancia al respeutive de ésti. La fuercia centrífuga (o, meyor dichu, l'ausencia de fuercia centrípetocentrípeta) tira de la bolina escontra fuera. El caltenimientu del momentu angular camuda la velocidá angular de la bolina cuando ésta muévese escontra dientro (acelera) y escontra fuera (frena). Tamién puede espresase diciendo que, pa caltener la so velocidá llinial, la bolina camuda la so velocidá angular al variar la distancia respeuto a la exa. Sía que non, la magnitú subxacente ye la inercia y l'esviación que sufre la bolina con al respeutive de la direición de los radios ye l'efeutu Coriolis.<br />''Izquierda'': El movimientu reparáu dende un puntu de vista esternu.<br/>''Derecha'': El movimientu vistu dende un puntu de vista solidariu col [[sistema non inercial]].]]
 
El '''efeutu Coriolis''', descritu en [[1836]] pol científicu francés [[Gaspard Coriolis|Gaspard-Gustave Coriolis]], ye l'efeutu que se repara nun [[sistema de referencia]] en [[movimientu de rotación|rotación]] cuando un cuerpu atópase en movimientu respeuto de dichu sistema de referencia. Esti efeutu consiste na esistencia d'una [[aceleración]] ''relativa'' del cuerpu en dichu sistema en rotación. Esta aceleración ye siempres perpendicular a la exa de rotación del sistema y a la velocidá del cuerpu.
=== Demostración per caltenimientu del momentu angular ===
[[Archivu:Coriolis uno.png|right|frame|Nun sistema de [[coordenaes cilíndriques]], la velocidá (en negru) d'un puntu puede descomponese nuna velocidá radial (en magenta), una velocidá axial (n'azul) y una velocidá tanxencial (en verde).]]
Ye precisu recordar que cuando un [[observador]] nun [[sistema non inercial]] (como lo ye un sistema en rotación) trata d'entender el comportamientu del so sistema como si fora un [[sistema inercial]] ve apaecer [[fuercia ficticio|fuercies ficticies]]. Nel casu d'un sistema en rotación, l'observador ve que tolos oxetos que nun tán suxetos alloñar de manera radial como si actuara sobre ellos una fuercia proporcional a les sos mases y a la distancia a una cierta recta (la exa de rotación). Esa ye la [[fuercia centrífuga]] qu'hai que compensar cola [[fuercia centrípetocentrípeta]] pa suxetar los oxetos. De xacíu, pa un observador esternu, asitiáu nun [[sistema inercial]] (sistema fixu), la única fuercia qu'esiste ye la fuercia centrípetocentrípeta, cuando los oxetos tán suxetos. Si nun lu tán, los oxetos van tomar la tanxente y van alloñase de la exa de rotación.
 
Si los oxetos nun tán inmóviles con respectu al observador del sistema en rotación, otra fuercia ficticio apaez: la fuercia de Coriolis. Vistu dende'l sistema en rotación, el movimientu d'un oxetu puede descomponese nuna componente paralela a la exa de rotación, otra componente radial (asitiada sobre una llinia que pasa pela exa de rotación y perpendicular a ésti), y una tercera componente tanxencial (tanxente a un círculu centráu na exa y perpendicular a ésti) (ver gráfica).
 
Un oxetu que se mueve paralelamente a la exa de rotación, vistu d'un sistema fixu, xira col sistema en rotación a la mesma [[velocidad angular]] y con radio constante. La única fuercia qu'actúa sobre l'oxetu ye la [[fuercia centrípetocentrípeta]]. L'observador del sistema en rotación namái nota la [[fuercia centrífuga]] contra la cual hai qu'oponese por que se quede a la mesma distancia de la exa.
 
[[Archivu:Coriolis-dos.png|right|frame|Cuando s'amenorga'l radiu de rotación d'un cuerpu ensin aplicar un torque, el momentu angular caltiense y la velocidá tanxencial aumenta. Sicasí, si obligar al cuerpu a caltener la mesma velocidá angular, la velocidá tanxencial mengua. L'esquema ta vistu dende un sistema fixu (inercial).]]
:<math>F_c= 2m\omega V_r\,</math>
 
Considerando un oxetu con velocidá tanxencial <math>\scriptstyle{V_t} </math> vista pol observador nel sistema en rotación. Esta vegada, la mesma masa tenida por un filo tien una velocidá angular distintu del sistema en rotación. Pal observador nel sistema en rotación, les fuercies que nota aplicaes a la masa por que siga una trayeutoria circular son: la fuercia centrífuga <math>\scriptstyle{m\omega^2R} </math> que ve aplicada en tolos oxetos, más la fuercia centrípetocentrípeta por cuenta de la rotación aparente de la masa <math>\scriptstyle{m{V^2\over R}} </math>. Pero eso non basta. Hai entá otra fuercia aparente, y ye precisamente la fuercia de Coriolis. Calcúlase agora la fuercia centrípetocentrípeta que ve un observador fixu: la velocidá tanxencial ye <math>\scriptstyle{V_\circ=\omega R+V_t} </math>. Pa esti observador, la fuercia centrípetocentrípeta que caltién la masa a distancia constante va ser:
 
:<math> F_\circ=m\textstyle {V^2\over R}= m\textstyle {\left(\omega R+V_t \right)^2\over R}=m\textstyle{\left( \omega^2R^2 +2\omega RV_t + {V_t^2} \right)\over R}=m\left(\omega^2R+2\omega V_t + \textstyle {V_t^2\over R} \right) </math>
 
El primer términu ye la fuercia centrífuga común a tolos oxetos que xiren col sistema en rotación. El terceru ye la fuercia centrípetocentrípeta debida a la rotación de la masa con respectu al sistema en rotación. Y el segundu términu ye la fuercia de Coriolis. Ye un términu suplementariu debíu al fechu de que la fuercia centrípetocentrípeta depende del cuadráu de la velocidá tanxencial y nun puede llograse sumando les fuercies centrífuga y centrípetocentrípeta por cuenta de velocidaes parciales. La fuercia de Coriolis ye:
 
:<math>F_c= 2m\omega V_t\,</math>
:3. El tren camuda la so direición y viaxa escontra l'este. Nesti casu al movese na mesma direición que la rotación terrestre, l'efeutu de Coriolis va tar dirixíu pa escontra fora de la exa de rotación, esto ye, escontra riba. Esta fuercia va causar que'l tren y los sos pasaxeros rexistren un menor peso que cuando s'atopaben en reposu.
[[File:Eotvos efect on 10Kg.png|thumb|350 px|Gráficu de la fuercia esperimentada por un oxetu de 10 kilogramos en función de la so velocidá de desplazamientu pol ecuador terrestre (dientro del sistema de referencia en rotación). (Los valores positivos na exa de fuercia tán dirixíos escontra riba. Los valores positivos na exa de velocidá tán dirixíos escontra l'este y los negativos escontra l'oeste).]]
:*Vistu dende l'espaciu, nel sistema de referencia inercial el tren al viaxar escontra l'este va sumar la so velocidá a la de la tierra y por tantu va vese xirando al doble de velocidá que cuando taba en reposu y por tantu la cantidá de fuercia centrípetocentrípeta necesaria pa caltener el movimientu circular ye mayor amenorgando la fuercia neto actuando sobre les víes escontra'l centru de la tierra. Esta diferencia de fuercia ye la esplicada enantes pol términu de Coriolis en sistema de referencia en rotación.
:*Como comprobación final podemos imaxinar al propiu tren como sistema de referencia en rotación. Una y bones el sistema rota al doble de velocidad angular qu'el de la tierra'l componente de [[fuercia centrífuga]] en dichu sistema de referencia ye mayor qu'el de la tierra y al tar los pasaxeros en reposu en dichu sistema esti sería l'únicu componente adicional, esplicando de nuevu que'l tren y los sos pasaxeros sían más llixeros que nos dos casos anteriores.
 
Esto esplica por que los proyeutiles a alta velocidá que se disparen escontra l'este esviar escontra riba ente que si son disparaos escontra l'oeste la esviación ye escontra baxo. Esta componente vertical del efeutu de Coriolis denominar el [[Efeutu Eötvös]].<ref>{{cita llibru|apellíu=Rugai|nome=Nick|títulu=Computational Epistemology: From Reality To Wisdom|fecha=1 d'avientu de 2012|idioma=inglés|publicación=Lulu.com|isbn=1300477237|páxina=304|url=https://books.google.es/books?id=KUIJBAAAQBAJ&pg=PA303&dq=eotvos+effect+equator&hl=ye&sa=X&vei=0CCwQ6AEwAjgUahUKEwj27PyPrt_HAhUJ1hQKHYwVBN0#v=onepage&q=eotvos%20effect%20equator&f=false|fechaacceso=6 de setiembre de 2015}}</ref>
 
Podemos usar l'exemplu pa esplicar por que el efeutu Eötvös empieza a amenorgase n'oxetos que viaxen escontra l'oeste una vegada qu'el so [[Velocidá#Velocidá_instant.C3.A1nea|velocidá tanxencial]] supera la velocidá de rotación de la tierra (465 m/s nel ecuador). Si'l tren que viaxa escontra l'oeste nel exemplu amonta la so velocidá nesa direición y reparar dende'l sistema de referencia inercial nel espaciu vamos ver qu'empieza a rotar alredor de la tierra que xira debaxo en direición contraria. Pa caltener esa trayeutoria circular, parte de la fuercia de la gravedá qu'emburria al tren contra les víes actuaría como fuercia centrípetocentrípeta. Una vegada que'l tren doblara la so velocidá a 930 m/s la fuercia centrípetocentrípeta sería igual a la esperimentada cuando'l tren atópase paráu. Dende'l puntu de vista del sistema de referencia inercial en dambos casos el tren ta rotando a la mesma velocidá (465 m/s) solo qu'en direiciones opuestes. Polo tanto la fuercia ye la mesma y por tantu l'efeutu Eötvös atayaríase dafechu a esa velocidá. Cualquier oxetu que se mueva escontra l'oeste a una velocidá cimera a 930 m/s nun esperimentara una esviación escontra baxo, si non escontra riba. El gráficu de la derecha ilustra la fuercia causada pol efeutu Eötvös qu'esperimentaría un oxetu de 10 gramos nel tren del exemplu en función de la so velocidá. La forma parabólica del gráficu esplícase porque la fórmula de la [[fuercia centrípetocentrípeta]] ye proporcional al cuadráu de la velocidá tanxencial. Nel sistema de referencia inercial la parte de baxo de la parábola taría centrada nel orixe. El desplazamientu del orixe esplícase porque tamos usando'l sistema de referencia en rotación de la tierra. Reparando'l gráficu podemos comprobar que l'efeutu Eötvös nun ye simétricu, y que la fuercia escontra baxo esperimentada por un oxetu viaxando escontra l'oeste a gran velocidá ye menor que la fuercia escontra riba esperimentada pol mesmu oxetu viaxando en direición al este a la mesma velocidá.
 
== Aplicación práutica ==