Sabemos qu'a) y b) nel teorema verifíquense si
f
{\displaystyle f}
y
g
{\displaystyle g}
son funciones angulares. Por tanto, si :
b
=
(
b
1
,
…
,
b
m
)
,
c
=
(
c
1
,
…
,
c
m
)
{\displaystyle \mathbf {b} ={\big (}b_{1},\ldots ,b_{m}{\big )},\mathbf {c} ={\big (}c_{1},\ldots ,c_{m}{\big )}}
tenemos
a
)
f
(
x
)
=
[
f
1
(
x
)
,
…
,
f
m
(
x
)
]
,
g
(
x
)
=
[
g
1
(
x
)
,
…
,
g
m
(
x
)
]
lim
x
→
a
(
f
+
g
)
(
x
)
=
lim
x
→
a
[
(
f
1
+
g
1
)
(
x
)
,
…
,
(
f
m
+
g
m
)
(
x
)
]
=
[
lim
x
→
a
(
f
1
+
g
1
)
(
x
)
,
…
,
lim
x
→
a
(
f
m
+
g
m
)
(
x
)
]
=
[
lim
x
→
a
f
1
(
x
)
+
lim
x
→
a
g
1
(
x
)
,
…
,
lim
x
→
a
f
m
(
x
)
+
lim
x
→
a
g
m
(
x
)
]
=
(
b
1
+
c
1
,
…
,
b
m
+
c
m
)
=
(
b
1
,
…
,
b
m
)
+
(
c
1
,
…
,
c
m
)
=
b
+
c
{\displaystyle {\begin{array}{rl}a)&\mathbf {f} {\big (}\mathbf {x} )={\big [}f_{1}{\big (}\mathbf {x} {\big )},\ldots ,f_{m}{\big (}\mathbf {x} {\big )}{\big ]},\mathbf {g} {\big (}\mathbf {x} )={\Big [}g_{1}{\big (}\mathbf {x} {\big )},\ldots ,g_{m}{\big (}\mathbf {x} {\big )}{\Big ]}\\&\lim _{\mathbf {x} \to \mathbf {a} }{\big (}\mathbf {f} +\mathbf {g} {\big )}{\big (}\mathbf {x} {\big )}=\lim _{\mathbf {x} \to \mathbf {a} }{\Big [}{\big (}f_{1}+g_{1}{\big )}{\big (}\mathbf {x} {\big )},\ldots ,{\big (}f_{m}+g_{m}{\big )}{\big (}\mathbf {x} {\big )}{\Big ]}=\\&{\Big [}\lim _{\mathbf {x} \to \mathbf {a} }{\big (}f_{1}+g_{1}{\big )}{\big (}\mathbf {x} {\big )},\ldots ,\lim _{\mathbf {x} \to \mathbf {a} }{\big (}f_{m}+g_{m}{\big )}{\big (}\mathbf {x} {\big )}{\Big ]}=\\&{\Big [}\lim _{\mathbf {x} \to \mathbf {a} }f_{1}{\big (}\mathbf {x} {\big )}+\lim _{\mathbf {x} \to \mathbf {a} }g_{1}(\mathbf {x} {\big )},\ldots ,\lim _{\mathbf {x} \to \mathbf {a} }f_{m}{\big (}\mathbf {x} {\big )}+\lim _{\mathbf {x} \to \mathbf {a} }g_{m}{\big (}\mathbf {x} {\big )}{\Big ]}=\\&{\big (}b_{1}+c_{1},\ldots ,b_{m}+c_{m}{\big )}={\big (}b_{1},\ldots ,b_{m}{\big )}+{\big (}c_{1},\ldots ,c_{m}{\big )}=\mathbf {b} +\mathbf {c} \end{array}}}
b
)
lim
x
→
a
λ
f
(
x
)
=
lim
x
→
a
λ
[
f
1
(
x
)
,
…
,
f
m
(
x
)
]
=
lim
x
→
a
[
λ
f
1
(
x
)
,
…
,
λ
f
m
(
x
)
]
=
[
lim
x
→
a
λ
f
1
(
x
)
,
…
,
lim
x
→
a
λ
f
m
(
x
)
]
=
[
λ
lim
x
→
a
f
1
(
x
)
,
…
,
λ
lim
x
→
a
f
m
(
x
)
]
=
λ
[
lim
x
→
a
f
1
(
x
)
,
…
,
lim
x
→
a
f
m
(
x
)
]
=
λ
(
b
1
,
…
,
b
m
)
=
λ
b
{\displaystyle {\begin{array}{rl}b)&\lim _{\mathbf {x} \to \mathbf {a} }\lambda \mathbf {f} {\big (}\mathbf {x} {\big )}=\lim _{\mathbf {x} \to \mathbf {a} }\lambda {\Big [}f_{1}{\big (}\mathbf {x} {\big )},\ldots ,f_{m}{\big (}\mathbf {x} {\big )}{\Big ]}=\lim _{\mathbf {x} \to \mathbf {a} }{\Big [}\lambda f_{1}{\big (}\mathbf {x} {\big )},\ldots ,\lambda f_{m}{\big (}\mathbf {x} {\big )}{\Big ]}=\\&{\Big [}\lim _{\mathbf {x} \to \mathbf {a} }\lambda f_{1}{\big (}\mathbf {x} {\big )},\ldots ,\lim _{\mathbf {x} \to \mathbf {a} }\lambda f_{m}{\big (}\mathbf {x} {\big )}{\Big ]}={\Big [}\lambda \lim _{\mathbf {x} \to \mathbf {a} }f_{1}{\big (}\mathbf {x} {\big )},\ldots ,\lambda \lim _{\mathbf {x} \to \mathbf {a} }f_{m}{\big (}\mathbf {x} {\big )}{\Big ]}=\\&\lambda {\Big [}\lim _{\mathbf {x} \to \mathbf {a} }f_{1}{\big (}\mathbf {x} {\big )},\ldots ,\lim _{\mathbf {x} \to \mathbf {a} }f_{m}{\big (}\mathbf {x} {\big )}{\Big ]}=\lambda {\big (}b_{1},\ldots ,b_{m}{\big )}=\lambda \mathbf {b} \end{array}}}
c
)
(
f
⋅
g
)
(
x
)
−
b
⋅
c
=
[
f
(
x
)
−
b
]
⋅
[
g
(
x
)
−
c
]
+
b
⋅
[
g
(
x
)
−
c
]
+
c
⋅
[
f
(
x
)
−
b
]
{\displaystyle c)\quad {\big (}\mathbf {f} \cdot \mathbf {g} {\big )}{\big (}\mathbf {x} {\big )}-\mathbf {b} \cdot \mathbf {c} ={\Big [}\mathbf {f} {\big (}\mathbf {x} {\big )}-\mathbf {b} {\Big ]}\cdot {\Big [}\mathbf {g} {\big (}\mathbf {x} {\big )}-\mathbf {c} {\Big ]}+\mathbf {b} \cdot {\Big [}\mathbf {g} {\big (}\mathbf {x} {\big )}-\mathbf {c} {\Big ]}+\mathbf {c} \cdot {\Big [}\mathbf {f} {\big (}\mathbf {x} {\big )}-\mathbf {b} {\Big ]}}
Aplicando la desigualdá triangular y la desigualdá de Cauchy-Schwarz tenemos
|
(
f
⋅
g
)
(
x
)
−
b
⋅
c
|
⩽
‖
f
(
x
)
−
b
‖
⋅
‖
g
(
x
)
−
c
‖
+
‖
b
‖
⋅
‖
g
(
x
)
−
c
‖
+
‖
c
‖
⋅
‖
f
(
x
)
−
b
‖
⇒
0
⩽
lim
‖
x
−
a
‖
→
0
|
(
f
⋅
g
)
(
x
)
−
b
⋅
c
|
⩽
lim
‖
x
−
a
‖
→
0
‖
f
(
x
)
−
b
‖
⋅
lim
‖
x
−
a
‖
→
0
‖
g
(
x
)
−
c
‖
+
‖
b
‖
⋅
lim
‖
x
−
a
‖
→
0
‖
g
(
x
)
−
c
‖
+
‖
c
‖
lim
‖
x
−
a
‖
→
0
‖
f
(
x
)
−
b
‖
=
0
⋅
0
+
‖
b
‖
⋅
0
+
‖
c
‖
⋅
0
=
0
{\displaystyle {\begin{array}{l}{\Big |}{\big (}\mathbf {f} \cdot \mathbf {g} {\big )}{\big (}\mathbf {x} {\big )}-\mathbf {b} \cdot \mathbf {c} {\Big |}\leqslant {\Big \|}\mathbf {f} {\big (}\mathbf {x} {\big )}-\mathbf {b} {\Big \|}\cdot {\Big \|}\mathbf {g} {\big (}\mathbf {x} {\big )}-\mathbf {c} {\Big \|}+{\big \|}\mathbf {b} {\big \|}\cdot {\Big \|}\mathbf {g} {\big (}\mathbf {x} {\big )}-\mathbf {c} {\Big \|}+{\big \|}\mathbf {c} {\big \|}\cdot {\Big \|}\mathbf {f} {\big (}\mathbf {x} {\big )}-\mathbf {b} {\Big \|}\Rightarrow \\0\leqslant \lim _{{\big \|}\mathbf {x} -\mathbf {a} {\big \|}\to 0}{\Big |}{\big (}\mathbf {f} \cdot \mathbf {g} {\big )}{\big (}\mathbf {x} {\big )}-\mathbf {b} \cdot \mathbf {c} {\Big |}\leqslant \lim _{{\big \|}\mathbf {x} -\mathbf {a} {\big \|}\to 0}{\Big \|}\mathbf {f} {\big (}\mathbf {x} {\big )}-\mathbf {b} {\Big \|}\cdot \lim _{{\big \|}\mathbf {x} -\mathbf {a} {\big \|}\to 0}{\Big \|}\mathbf {g} {\big (}\mathbf {x} {\big )}-\mathbf {c} {\Big \|}+\\{\big \|}\mathbf {b} {\big \|}\cdot \lim _{{\big \|}\mathbf {x} -\mathbf {a} {\big \|}\to 0}{\Big \|}\mathbf {g} {\big (}\mathbf {x} {\big )}-\mathbf {c} {\Big \|}+{\big \|}\mathbf {c} {\big \|}\lim _{{\big \|}\mathbf {x} -\mathbf {a} {\big \|}\to 0}{\Big \|}\mathbf {f} {\big (}\mathbf {x} {\big )}-\mathbf {b} {\Big \|}=0\cdot 0+{\big \|}\mathbf {b} {\big \|}\cdot 0+{\big \|}\mathbf {c} {\big \|}\cdot 0=\\0\end{array}}}
, como queríamos demostrar.
d
)
g
(
x
)
=
f
(
x
)
,
c
=
b
⇒
lim
x
→
a
‖
f
(
x
)
‖
2
=
‖
b
‖
2
{\displaystyle d)\quad \mathbf {g} {\big (}\mathbf {x} {\big )}=\mathbf {f} {\big (}\mathbf {x} {\big )},\mathbf {c} =\mathbf {b} \Rightarrow \lim _{\mathbf {x} \to \mathbf {a} }{\Big \|}\mathbf {f} {\big (}\mathbf {x} {\big )}{\Big \|}^{2}={\big \|}\mathbf {b} {\big \|}^{2}}
, como queríamos demostrar.