Teorema de Pitágores


El teorema de Pitágores establez que nun triángulu rectángulu la suma de los cuadraos de los catetos ye igual al cuadráu de la hipotenusa:

Teorema de Pitágores
teorema
Cambiar los datos en Wikidata


Demostraciones

editar

Conócense cientos de demostraciones del teorema de Pitágores.

Por distintos allugamientos de triángulos nun mesmu cuadráu

editar
 
Allugamientu de cuatro triángulos nel interior d'un cuadráu de llau  

Seya un cuadráu de llau  . Ye posible axuntar cuatro copies del triángulu rectángulu de catetos   y   ya hipotenusa   al rodiu del cuadráu, formando un cuadráu nuevu de llau  . L'area d'esti cuadráu grande, poro, ye igual a   más la suma de les árees de los cuatro triángulos.

Per otru llau, el cuadráu de llau   pue formase tamién a partir de los cuatro triángulos rectángulos d'enantes y dos cuadraos de llaos   y   respeutivamente. L'área d'esti cuadráu ye agora   más les árees de los cuatro triángulos.

En comparando les dos espresiones y desaniciando les árees de los triángulos, s'atopa que  .

Xeneralizaciones

editar

Teorema del cosenu

editar

El teorema del cosenu ye una xeneralización del teorema de Pitágores pa triángulos arbitrarios. Si'l triángulu tien por llaos  ,   y  , esti teorema diz que

 

onde   ye l'ángulu ente los llaos   y  . Nos triángulos rectángulos,   ye un ángulu reutu y'l so cosenu ye igual a cero; poro, nesti casu'l teorema del cosenu diz lo mesmu que'l teorema de Pitágores. Amás, si los llaos del triángulu satisfaen la ecuación

 

entós tien de cumplirse que  , y asina   tien de ser reutu; y'l triángulu orixinal, rectángulu.


Referencies

editar

Enllaces esternos

editar